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Del 1: Utförlig sammanfattning  
Syftet med studien var att härleda det effektivaste sättet att introducera genomisk 
selektion för nya egenskaper, som de egenskaper som kommer från mjölkrobotar (även 
kallade automatiska mjölkningssystem eller AMS). 
 
Vi studerade två delar av denna utmaning: 1) Hur kan man förbättra imputeringen av 
genotyper i nordiska mjölkraser med hjälp av befintliga genotypdata? 2) Vilken säkerhet 
i den genomiska selektionen kan man uppnå baserat på tidigare resultat och nuvarande 
status för genotypning av besättningar i Sverige? Detta studerades med hjälp av 
omfattande simuleringsstudier för ett stort antal scenarier. 
 
Resultaten visade det är möjligt att imputera genotyper med hög säkerhet med nordiska 
data, inklusive imputering av icke-genotypade djur. Med hjälp av en referenspopulation 
på 5000 kor med både genotyper och fenotyper kan genomiska avelsvärden skattas med 
en säkerhet > 0,4 för egenskaper med en måttlig arvbarhet (0,3), förutsatt att genotyperna 
är korrekt imputerade till medeltäthet (45000 SNP). När man använder ytterligare djur 
med bara fenotypinformation i en så kallades ’single step’ modell (dvs utan ytterligare 
genotypning) blir noggrannheten för egenskaper med en arvbarhet omkring 0,15 också 
acceptabel (>0,4). För genomisk avelsvärdering av egenskaper med låg arvbarhet 
kommer ytterligare genotypning och fenotypning att krävas före genomförandet av 
genomiskt selektion. Denna studie har visat att genomiskt urval för egenskaper som mäts 
av mjölkrobotar är tekniskt möjligt i Sverige utan ytterligare investeringar. Lösningar för 
datautbyte mellan olika ekonomiska intressenter behöver emellertid vara enklare innan 
detta kan bli verklighet.  

Registreringar från automatiska mjölkningssystem som 
informationskälla i genomisk avelsvärdering 
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Del 2: Rapporten  
 
Introduction 
According to LRF Sweden and Swedish Agriculture board, there were 4048 dairy farms 
with a total of 337,000 cows in 2016.  About 20% of the farms use a milking robot 
equating to 1/3 of all the cows. Around 220 farms are enrolled in the routine genotyping 
program of Viking Genetics and Växa Sverige, corresponding to about 10,000 genotyped 
cows. About half of these farms use a milking robot. These milking robots collect vast 
amounts of data that, at present, are mainly used for management advice to the farmers. 
These traits could also be valuable for selective breeding, in particular when it comes to 
traits that make animals better suited to robot milking.  In an earlier project, we explored 
the heritabilities of a range of traits that can be derived from milking robot data (as 
presented in Carlström, 2014; Carlström et al., 2013, 2014, 2016a, 2016b). It was 
concluded that many of these traits have moderate heritiabilites and could be suitable for 
selective breeding.   
 
Following the introduction of genomic selection by Meuwissen et al. (2001), the 
traditional pedigree-based breeding schemes in dairy cattle have shifted to genomic-based 
breeding schemes in Western societies. The benefits of genomic-based over traditional 
breeding schemes have been proposed by Schaeffer (2006), and are summarized as 
follows: a) genomic-based can double the genetic gain per year compared with traditional 
breeding schemes; b) genomic-based considerably reduce the average age of an animal 
when a replacement progeny is born (generation interval) of sires of bulls, sires of cows 
and dams of bulls, and c) genomic-based produce more than 90% savings in logistical 
costs compared with the traditional breeding schemes.  
 
Furthermore, costs of genotyping cows have decreased considerably in the last years. The 
low density SNP chip routinely used in Sweden is about 30 € per animal. Although 30 € 
seems reasonable, it is still the farmer who has to pay. In Sweden, the average farms has 
75 cows per herd. The current strategy consists in genotyping all cows in a herd, which 
can still be considered expensive in terms of time to collect blood samples, processing 
and genotyping all the cows. Nevertheless, genotyping all cows does not necessarily add 
relevant information in genomic-based breeding schemes. Only cows with relevant 
information will help improve genomic predictions and help optimize mating/selection 
strategies. Thus, genotyping fewer cows may reduce the costs paid by farmers, and this 
may be done without reducing the relevant information needed for the success of 
genomic-based breeding schemes. 
 
In the last five years, around 10,000 cows have been genotyped in Sweden. These cows 
provide an important so-called reference population. A proposed cost-effective 
alternative to reduce the number of genotyped cows is imputation (Druet et al., 2014). 
Imputation statistically predicts the genotype of an animal based on a reference 
population.  With imputation, a lower density of genetic markers (e.g., 7,000 SNP) can 
be imputed to the higher density of genetic markers (e.g., 50,000 SNP). Because 
imputation is a statistical prediction, uncertainty will be present. Nevertheless, at a certain 



  

3 

 

accuracy, imputation can be done without prejudice of the information needed for 
genomic-based breeding schemes. The guarantee that a non-genotyped cow will be 
accurately imputed will depend on some factors (Daetwyler et al., 2014), such as: a) how 
sampled and reference population are genetically related; b) that the reference population 
contains enough genotyped cows and bulls, and c) a not too low minor allele frequency 
of a genetic marker is needed. Therefore, imputation can increase the number of genetic 
markers without neither prejudice of information nor increasing costs for farmers. 
 
The aim of the present study was to derive the most efficient way to introduce genomic 
selection for novel traits, such as those derived from milking robots (also called automatic 
or voluntary milking systems or AMS/VMS). We studied both the use of imputation and 
the implementation of genomic selection using a range of scenarios.  This shows what 
accuracy of genomic prediction we can achieve now for novel traits, and how we can 
increase that level in the future. 
 
Material and Methods 
 
Imputation of genotypes in Nordic Red cattle. Originally, our reference population 
contained 400 genotyped Nordic Red cows for 777,000 SNP genotypes. To exemplify 
that imputation is a feasible approach, we performed a 5-fold cross-validation of an 
imputation. Our sampled population of cows was created by randomly selecting 20% of 
the reference population (i.e., 80 cows). This sampling was repeated 5 times until all the 
cows had been in the prediction set exactly once. To create a panel of genotypes with 
lower marker density, we masked the genotypes of our sampled population resulting in a 
50,000 SNP genotypes panel in each prediction set. Subsequently, we imputed each set 
at a time (i.e., 80 cows with 50,000 SNP genotypes) based on a reference population of 
320 cows with 777,000 SNP genotypes. This imputation was performed in Beagle 
software (Browning and Browning, 2009). Accuracy of imputation was estimated using 
the correlation of the imputed genotype with the true genotypes. 
 
Imputation of genotypes in Nordic Holstein cattle. In a related study, we examined the 
efficiency of imputation in Nordic Holstein, in particular the imputation of the X 
chromosome and imputation of non-genotyped animals (Mao et al., 2016). There were 
26,884 genotyped animals in our dataset, which spanned multiple countries. These 
animals were genotyped by Illumina BovineSNP50 BeadChip version 1 and 2 (50k). 
Imputation was carried out using FImpute V2.2 (Sargolzaei et al., 2014). Target groups 
were generated by randomly masking 26,884 50k animals to 2,000  non-genotyped   (0k) 
animals or 2,000 Illumina BovineLD BeadChip typed (7k) animals, leaving 24,884 
animals in the dataset as a reference set.  
 
Genomic prediction for a novel trait. At present around 220 farms comprising around 
10,000 cows are enrolled in the genotyping program of VikingGenetics in Sweden. About 
half of these have a milking robot, so we can assume that about 5000 cows have both 
genotypes and potential access to AMS phenotypes (Växa Sverige, personal 
communication). Here we explored via simulation what accuracy for genomic selection 
could be expected if we started genomic selection for new traits, based on the AMS data 
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using different scenarios. Traits were divided into three groups based on their heritability 
(h2) (as presented in Carlström, 2014; Carlström et al., 2013, 2014, 2016a, 2016b). Group 
1 (with a simulated h2 = 0.30) is representative for traits with moderate heritability like 
average flow rate (0.27-0.54); milking time (0.33-0.44); box time (0.21-0.44); proportion 
attachment (0.21-0.31); and udder conformation (0.18-0.45). Group 2 (simulated h2 = 
0.15) represents traits like handling time (0.05-0.15); milking interval (0.09-0.26); 
general temperament (0.08-0.15), and lactation average somatic cell score (SCS, 0.11-
0.17). The third group are traits with a low heritability (h2=0.05) such as number of 
milkings (0.02-0.07) and proportion incomplete milkings (0.02-0.06).  
 
To mimic a Nordic cattle population, data were generated with QMSim simulation 
software (Sargolzaei and Schenkel, 2009) with 6 replicates. At the beginning, in order to 
produce a realistic level of linkage disequilibrium (LD close to 0.5), 800 generations of a 
historical population were generated with initially 3,000 animals, increasing to 40,000 at 
generation 500, and then decreasing to 30,000 by the last generation; one-tenth of animals 
were sires. Then complete data was generated for 20,000 cows and 2000 bulls over 20 
generations. Single records were generated for dams, and heritabilities of 0.3, 0.15 and 
0.05. The replacement rate for sires and dams was 90% and 30%, respectively. Due to 
intention to imitate the beginning of the breeding program where those traits will be 
introduced, in the simulation process the mating was defined random and the selection 
criterion was based on high values for phenotypes.  
 
Genotypes were simulated for 45,000 biallelic SNP markers distributed along 29 
chromosomes with a total length of 2,319 cM, which mimicked the bovine genome 
without sex chromosomes. A total of 450 biallelic and randomly distributed QTL affected 
the trait, with effects sampled from a normal distribution. Genomic information was 
generated for generations 16 through 20. Also, data for low density SNP chip was created 
by taking every 7th SNP, resulting in 5,959 markers. In the simulations, the reference 
population was always 5,000 cows with genotypes and phenotypes.  
 
We first wanted to test how well this reference population would predict the breeding 
values of other animals using a range of scenarios: 1) for within-herd selection we tested 
how well the 5,000 cows in the reference population predicted the estimated breeding 
value (EBV) of their own daughters that only have genotype information (scenario 
DD_G). 2) In order to mimic across herd selection, we estimated how well the reference 
cows predicted for their half-sibs in other herd (scenario HS_G). 3) We also tested how 
well the current reference population would predict 20,000 random cows from the 
population (RAND_G). 
 
Another approach to reduce genotyping costs, beside imputation, is to combine animals 
that have genotyping data and phenotyping data with those animals that have only 
phenotype data. With the development of so-called ‘Single Step’ genomic evaluation we 
can use all the animals that have phenotypic data for genetic evaluation, regardless of 
their genotyping status (Legarra et al., 2014). We evaluated several single-step scenarios, 
where we combine the current reference population of 5000 cows with the phenotypic 
data of 1) 5,000 daughters (DD_P), 2) 5,000 half-sibs (HS_P) or 3) 20,000 random cows 
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that are currently not genotyped (RAND_P).  Finally we looked at a scenario where the 
20,000 random animals had both phenotypes and genotypes (RAND_GP). The scenario 
would use existing phenotype data but require and additional genotyping effort. 
For each scenario, we tested the accuracy of the predicted breeding values when using a) 
pedigree information only, b) a low density (LD) SNP chip with 5959 SNP and c) a 
medium density (MD) SNP chip with 45K SNP. 
 
Accuracy of EBVs was calculated as the correlation between true and estimated breeding 
values. All analyses were done using software from the BLUPF90 family (Misztal et al., 
2015). Genomic EBVs were estimated using ssGBLUP (Aguilar et al., 2010). For 
simplicity and because all data were simulated, the model used for all scenarios accounted 
for 1 fixed effect (overall mean), a random animal genetic effect, and a random residual: 

y=1µ+Za+e 
where y is the vector of phenotypes, µ is a vector of fixed effect (overall mean), a is the 
vector of additive animal effect, e is the vector of random residual effect and Z is the 
incidence matrix for the random effect in a. It was assumed that a ~ N(0, Hσ2a); in which 
σ2a is the additive genetic variance and H is the matrix that combines pedigree and 
genomic relationships. In all analyses we included five generations of pedigree 
information. 
 
Results and Discussion 
 
Imputation in Nordic Red cattle. The accuracy of imputation for this 5-fold cross-
validation is equal to 0.805 (Table 1). In practice, this means that >80% of the imputed 
data is accurately imputed at a higher density of genotypes.  
 
Table 1. Accuracy of a 5-fold cross-validation of an imputation* from lower density 
(50,000 SNP) to higher density of genetic markers (777,000 SNP) 

FOLD N** AVERAGE MINIMUM MAXIMUM 
1 80 0.807 0.765 0.861 
2 80 0.804 0.774 0.828 
3 80 0.803 0.763 0.862 
4 80 0.804 0.763 0.861 
5 80 0.806 0.765 0.862 
TOTAL 80 0.805   

*The reference population of each fold is composed of 320 genotyped cows for 
777,000 SNP genotypes. 
**N= sampled population 
 
Imputation in Nordic Holstein cattle. In Mao et al (2016), we showed that imputation 
for non-genotyped animals was possible when close family relationships were present. 
The effects of different male/female ratio in the reference group on the imputation 
accuracy of the X chromosome, BTAs, and BTA2 are shown in Table 2. The results 
showed that in general, more females in the reference group increased the imputation 
accuracy, especially for the X chromosome. For SNP-wise accuracy, a reference group 
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of  8,000 males gave an accuracy of 0.74 for the X chromosome in the scenario of 
imputing from 0k to 50k, while 8,000 females resulted in an accuracy of 0.97. In 
general, imputation from 0k to 50k was less accurate than from 7k to 50k. For example, 
SNP-wise accuracy of 0k to 50k for BTAs was on average 10% lower than 7k to 50k 
(Table 2). 
 
Table 2. SNP-wise imputation accuracy in Nordic Holstein for different scenarios. 
(adapted from Mao et al., 2016)  

    0k -> 50k1   7k -> 50k2 

  No. of 
animals BTA3 Chr24 X5 PAR6  BTA3 Chr24 X5 PAR6 

Size of reference 24884 0.89 0.89 0.95 0.81  0.98 0.97 0.95 0.85 

 20000 0.88 0.88 0.95 0.79  0.97 0.97 0.94 0.80 
 15000 0.87 0.87 0.94 0.78  0.96 0.96 0.94 0.77 

Male/Female 8000/0 0.85 0.84 0.74 0.68  0.95 0.95 0.92 0.67 

 6000/2000 0.86 0.85 0.95 0.75  0.96 0.96 0.93 0.72 
 4000/4000 0.85 0.84 0.96 0.77  0.95 0.95 0.94 0.69 
 2000/6000 0.86 0.86 0.97 0.78  0.95 0.96 0.94 0.68 
  0/8000 0.88 0.87 0.97 0.78   0.96 0.96 0.96 0.63 

10k ->50k: scenario of imputing non-genotyped animals to 50k 
27k -> 50k: scenario of imputing 7k animals to 50k 
3BTA: average of 29 Bos taurus autosomes 
4Chr2: Chromosome 2 
5X: X chromosome 
6PAR: pseudo-autosome region 
 
Furthermore, the accuracy of imputation increases when more cows are present in the 
reference population.  According to Pausch et al. (2013), an imputation accuracy of about 
99% can be obtained when a reference population of >400 animals is used. This is clearly 
illustrated by the differences between the Nordic Red (Table1) and the Nordic Holstein 
(Table 2). The latter shows imputation accuracy > 0.85 for non-genotyped individuals 
using a large reference population.  The combination of imputation with a reduced 
number of genotyped cows at farm level can be an efficient way of reducing the farmers’ 
costs. By using this cost-effective alternative, we help optimize the decision-making 
process of the farmer in deciding to genotype less cows. 
 
Genomic prediction for a novel trait.  The estimated accuracies for the simulated data 
are summarized in Table 3 and Table 4.  The first striking observation is that with the low 
density genotyping, the genomic prediction of the breeding values is hardly better than 
using only pedigree data. The importance of imputation is well illustrated by the 
compelling increase to a higher density as this shows clear improvement of accuracy 
across all scenarios. Those findings are in agreement with studies by Solberg et al. (2008), 
Erbe et al. (2012), and He et al. (2017). When predicting young animals that have only 
genotypes but no phenotypes, the accuracy for predicting daughters’ breeding value is the 
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same as predicting half-sibs (Table 3). In all cases slightly better prediction of 
performance of young animals were obtained when within and across herd selection was 
performed compared to random selection of animals (Table 3). The reason for this is due 
to closely related reference population to young animals (dam –daughter or half sibs), 
compared to randomly chosen animals. For the traits with a moderate heritability of 0.30, 
the accuracy using the medium density SNP information was around 0.4 across scenarios. 
This level has been suggested as a decent starting point for genomic selection. One 
example is the recent introduction of a new breeding value for ‘feed saved’ in Australia, 
which was introduced with an initial accuracy of 0.4 (Dr. Jennie Pryce, LaTrobe 
University, personal communication). For traits with lower heritabilities it is clearly 
desirable to expand the reference population (Table 3).  
  
When using single-step genomic prediction and including phenotypes of daughters 
(DD_P), half sibs (HS_P), or random animals (RANDOM_P) to the reference population, 
the accuracies improve for all scenarios (Table 4). As expected, estimates of traits with 
higher heritability were more accurately predicated than those with lower heritability. The 
phenotypic information from daughters contributes almost as much as taking phenotypic 
information from half-sibs. (Table 4). The latter has the additional benefit that this data 
is readily available at an earlier time. The highest accuracy comes from including 
phenotypes from 20,000 random animals (Table 4).   
 
When we have genotyping and phenotyping on an additional 20,000 cows, randomly 
selected from the population, the accuracies are > 0,40 for all heritabilities, provided the 
data are accurately imputed to medium density (Figure 1). 
 
Table 3. Estimated accuracy (± empirical SE) as a correlation between true breeding values and 
estimated breeding values for different scenarios using a reference population of 5,000 cows. 

 DD_G 
 MD LD PED 

h2=0.30 0.41±0.02 0.33±0.01 0.34±0.01 
h2=0.15 0.25±0.01 0.22±0.01 0.22±0.01 
h2=0.05 0.18±0.02 0.16±0.03 0.15±0.02 

 HS_G 
 MD LD PED 

h2=0.30 0.41±0.02 0.33±0.01 0.34±0.01 
h2=0.15 0.25±0.01 0.22±0.01 0.22±0.01 
h2=0.05 0.18±0.02 0.16±0.03 0.15±0.02 

 RAND_G 
 MD LD PED 

h2=0.30 0.38±0.01 0.30±0.01 0.30±0.01 
h2=0.15 0.27±0.01 0.21±0.01 0.20±0.01 
h2=0.05 0.15±0.00 0.14±0.01 0.14±0.01 

  
 

DD_G is a scenario where 5,000 reference 
cows with genotypes and phenotypes are 
used to predict breeding values of their 5,000 
daughters with genotypes only. HS_G is the 
scenario where the 5,000 reference cows are 
used to predict 5,000 of their half sibs with 
genotypes only (across herd design). RAND_G 
is a scenario where the 5,000 reference cows 
are used to predict 20,000 randomly selected 
cows with genotypes only (across population). 
PED shows the accuracy of the EBV that can 
be obtained using only the pedigree 
information. LD refers to genomic selection 
using 5,959 SNP and MD refers to genomic 
selection with 45K SNP. 
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Table 4. Estimated accuracy (± empirical SE) as a correlation between true breeding values and 
estimated breeding values using single step genomic prediction for different scenarios.  

 DD_P 
 MD LD PED 

h2=0.30 0.55±0.00 0.51±0.01 0.51±0.01 
h2=0.15 0.40±0.01 0.37±0.01 0.37±0.01 
h2=0.05 0.26±0.01 0.24±0.01 0.24±0.01 

 HS_P 
 MD LD PED 

h2=0.30 0.56±0.00 0.52±0.01 0.52±0.01 
h2=0.15 0.42±0.00 0.38±0.01 0.39±0.01 
h2=0.05 0.27±0.01 0.25±0.01 0.25±0.01 

 RAND_P 
 MD LD PED 

h2=0.30 0.60±0.00 0.56±0.00 0.56±0.00 
h2=0.15 0.46±0.00 0.43±0.01 0.43±0.00 
h2=0.05 0.30±0.01 0.28±0.01 0.28±0.01 

 

 
Figure 1. The expected accuracies when adding 20,000 random cows with phenotypes 
and genotypes to the current reference population of 5000 cows (scenario RAND_GP). 
PED shows the accuracy of the EBV that can be obtained using only the pedigree 
information. LD refers to genomic selection using 5,959 SNP and MD refers to genomic 
selection with 45K SNP. 
 
Conclusions 

DD_P is a scenario where the reference 
population with genotypes and phenotypes 
of the 5,000 reference cows is combined with 
phenotypes of 5,000 daughters. HS_P is the 
scenario where the 5,000 reference cows are 
combined with phenotypes of 5,000 of their 
half sibs (across herd design). RAND_P is a 
scenario where the 5000 reference cows are 
combined with phenotypes from 20,000 
randomly selected cows (across population). 
PED shows the accuracy of the EBV that can 
be obtained using only the pedigree 
information. LD refers to genomic selection 
using 5,959 SNP and MD refers to genomic 
selection with 45K SNP. 
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This study shows that with the current level of genotyping and use of AMS data, genomic 
selection with acceptable accuracies can be realized for novel traits with low to moderate 
heritabilities. Accuracies around 0.4 can be achieved using the current data from farms 
that have both milking robots and are enrolled in the genotyping program by Viking 
Genetics. Genotyping data from these farms are routinely imputed to 50K SNP density 
using the large reference population (several tens of thousands across the Nordic 
countries) at Viking Genetics. Higher accuracies of genomic prediction can be achieved 
by using single step genomic selection using, potentially, all cows with milking robot 
data. It is important to note that is can be achieved now, without further investments by 
either the breeding companies, the robot manufacturers, or the farmers themselves.  
 
The main challenge to start using this kind of data in genomic evaluation is that the data 
from milking robots reside with the companies that sell the milking robots and the 
associated management software. In order to share this kind of data for genomic 
evaluations, there needs to be a clear incentive for these companies.  
 
In conclusion we can state that the implementation of genomic selection for data derived 
from milking robots is technically possible, but requires ‘political’ solutions to become a 
reality.  
 
Recommendations for industry 
In order to move genomic selection using AMS data from a technical possibility to a 
reality, all which is required is to develop protocols for data exchange between the robot 
providers and the breeding companies. We have started the required dialogue within this 
project but could not bring it to a stage where we could use real data to pilot this approach.  
The dialogue should be continued by the main stakeholders: Växa Sverige, Viking 
Genetics, De Laval and possibly also Lely. LRF could have a crucial role.  
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